Optimal Feedback Control for Undamped Wave Equations by Solving a Hjb Equation
نویسندگان
چکیده
An optimal finite-time horizon feedback control problem for (semi-linear) wave equations is presented. The feedback law can be derived from the dynamic programming principle and requires to solve the evolutionary Hamilton-Jacobi-Bellman (HJB) equation. Classical discretization methods based on finite elements lead to approximated problems governed by ODEs in high dimensional spaces which makes the numerical resolution by the HJB approach infeasible. In the present paper, an approximation based on spectral elements is used to discretize the wave equation. The effect of noise is considered and numerical simulations are presented to show the relevance of the approach.
منابع مشابه
Suboptimal Feedback Control of PDEs by Solving HJB Equations on Adaptive Sparse Grids
An approach to solve nite time horizon sub-optimal feedback control problems for partial di erential equations is proposed by solving dynamic programming equations on adaptive sparse grids. The approach is illustrated for the wave equation and an extension to equations of Schrödinger type is indicated. A semi-discrete optimal control problem is introduced and the feedback control is derived fro...
متن کاملHJB Equations for the Optimal Control of Differential Equations with Delays and State Constraints, I: Regularity of Viscosity Solutions
We study a class of optimal control problems with state constraints, where the state equation is a differential equation with delays. This class includes some problems arising in economics, in particular the so-called models with time to build, see [1, 2, 26]. We embed the problem in a suitable Hilbert space H and consider the associated Hamilton-Jacobi-Bellman (HJB) equation. This kind of infi...
متن کاملEquations for the Optimal Control of Differential Equations with Delays and State Constraints , I : Regularity and Applications . ∗
We study a class of optimal control problems with state constraints where the state equation is a differential equation with delays. This class includes some problems arising in economics, in particular the so-called models with time to build, see [1, 2, 25]. We embed the problem in a suitable Hilbert space H and consider the associated Hamilton-Jacobi-Bellman (HJB) equation. This kind of infin...
متن کاملOptimal Control of ∞-dimensional Stochastic Systems via Generalized Solutions of Hjb Equations
In this paper, we consider optimal feedback control for stochastc infinite dimensional systems. We present some new results on the solution of associated HJB equations in infinite dimensional Hilbert spaces. In the process, we have also developed some new mathematical tools involving distributions on Hilbert spaces which may have many other interesting applications in other fields. We conclude ...
متن کاملPolynomial approximation of high-dimensional Hamilton-Jacobi-Bellman equations and applications to feedback control of semilinear parabolic PDEs
A procedure for the numerical approximation of high-dimensional Hamilton-JacobiBellman (HJB) equations associated to optimal feedback control problems for semilinear parabolic equations is proposed. Its main ingredients are a pseudospectral collocation approximation of the PDE dynamics, and an iterative method for the nonlinear HJB equation associated to the feedback synthesis. The latter is kn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014